Smart Wheels

SMART Mechanical

SMART Mechanical

Smart Wheel - Introduction

Smart Wheel application has a double goal: safety and/or performance improvement

- ✓ Validation of vehicles dynamic model
- ✓ Tire characterization
- ✓ R.T. data feeding to a new generation of anti lock braking systems and other safety applications
- ✓ R.T. data feeding to syncronized telemetry diagnostics

SMART Mechanical

Smart Wheel - Introduction

The first step for "real time" or "off-line" applications is the knowledge of the actual forces at the road-tire interface.

The reliability of the application strictly depends on the reliability and the effectiveness of their measurement.

Smart Wheel - Introduction

The approach can be different depending on the final goal.

a) Measurement on the suspension system components

SMARTMechanical favourite approach

b) Direct measurement on the wheel

Smart Wheel – SM Concept

SMART Mechanical

- Collaboration activities with companies have been active for more than 10 years
- Several different HW and SW versions have been realized to enhance measurement accuracy

Enhanced joint version: thin plate or elastic spokes

Multi objective structural optimization

Stress	Fatigue	
Strain sensitivity	Temp. sensitivity	
Stiffness	Weight	

SMART Mechanical

Calibration philosophy

- Different load combinations
 - Different load magnitude
 - Different angular positions

$$\begin{bmatrix} F_x F_y F_z M_x M_y M_z \end{bmatrix}^T = \begin{bmatrix} C_{11} & C_{12} & & & \\ C_{21} & C_{22} & & & \\ & & C_{33} & & & \\ & & & C_{44} & & \\ & & & & C_{55} & \\ & & & & & & C_{66} \end{bmatrix} [\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_4 \varepsilon_5 \varepsilon_6]^T$$

SMART Mechanical

Four wheeled vehicles - Applications

Commercial passenger car

SMART Mechanical

Four wheeled vehicles - Applications

Urban car prototype

SMART Mechanical

Four wheeled vehicles - Applications

Work machines

SMART Mechanical

Four wheeled vehicles - Specifications

- Real time measurement of 3 forces and 3 moments
- High accuracy and repeatibility
- System robustness
- Wireless data link

PASSENGER CAR			
Rim size	15"-19"	Total mass	10 kg
Max. force $F_x F_y F_z$	15 kN		
Uncertainty 95%	0.3% F.S.	1st nat. frequency	> 400 Hz
Resolution	1 N	Cross-talk 95%	< ±1% F.S.
		Max Overload	100% F.S.
Max. torque $M_x M_y M_z$	3.5 kNm	Data acquisition	6+1 ch. wireless
Uncertainty 95%	0.2% F.S.	Acquisition frequency	up to 400 Hz
Resolution	0.2 Nm	Power supply	Battery

SMART Mechanical

Motorbike application – Architecture

Friction-less concept

SMART Mechanical

Motorbike application – Architecture

New patented design for race application, developed in close collaboration with Politecnico di Milano and Marchesini Racing, a Brembo society

SMART Mechanical

Motorbike application – Race wheel prototype

Electronics accommodated in the wheel hub

SMART Mechanical

Motorbike application – Race wheel prototype

CFRP stiffening ribs glued to the rim

SMART Mechanical

Motorbike application – Race wheel prototype

Final calibration

SMART Mechanical

Motorbike application – Race wheel hub

Motorbike application

The new motorbike Smart Wheel at the Automotive Testing Expo 2013 in Stuttgart

SMART Mechanical

Motorbike application – Race wheel specifications

- Real-time measurement of 3 forces and 3 moments
- Lightweight and stiffness uniformity
- Very high accuracy and repeatibility
- Wireless data link

Rim size	15"-18"	Total mass	3 kg
Max. force $F_x F_y F_z$	6 kN		
Uncertainty 95%	0.5% F.S.	1st nat. frequency	> 300 Hz
Resolution	1 N	Cross-talk 95%	< ±1% F.S.
		Max Overload	+50% F.S.
Max. torque $M_x M_y M_z$	1.5 kNm	Data acquisition	6+1 ch. wireless
Uncertainty 95%	0.3% F.S.	Acquisition frequency	up to 400 Hz
Resolution	0.2 Nm	Power supply	Battery

SMART Mechanical

SmartMechanical_Company S.r.l. Via Tonale 9 24061 Albano Sant'Alessandro (BG) Italy

Tel. +39 035 4521465 Fax +39 035 4521082 info@smartmechanical-company.it www.smartmechanical-company.it

VAT N. 03834010161 REA N. BG-412189

